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NEWONE-STEPiNTEGRATION METHODS OF HIGH-ORDERACCURACY
APPL!ED TO

SOMEPROBLEMSIN CELESTIAL MECHANICS

By

Erwin Fehlberg
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SECTION !. INTRODUCTION

The methods for the numerical integration of initial value probtems in ordinary

differential equations can be divided into two ctasses--muttistep methods and

one- step methods.

Multistep methods were developed as early as the nineteenth century, mainty

for astronomical problems. Astheir name indicates, these methods use the

information from several backward (or also forward) computation steps in cal-

culating the solution for the current step. Multistep methods (such as the

ADAMS, GAUSS, COWELL, etc. methods)are very useful in problems for

which the numericat integration can be performed with a constant step size.

Since many such problems are encountered in astronomy, it is quite natural

that astronomers have developed a number of powerful muttistep methods.

Moreover, since these multistep methods can be extended to any order of accu-

racy (simply by adding higher-order difference terms to the formulas) and

since, in generat, they require only one or two evaluations of the differential

equations per step, they seem to represent a rather rapid and economicat

integration procedure.

3. However, multistep methods do have certain inconveniences and disadvantages.
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Do

They are not self-starting but require a special starting procedure.

Halving the step size during the computation requires time-

consuming iterations to build a new difference scheme.

The truncation error for multistep methods is larger than for one-

step methods of corresponding order. Multistep methods therefore

require a smaller step size than corresponding one-step methods.

The classical multistep methods are, for stability reasons, of only

a mediocre order of accuracy, considering the number of steps in-

volved. Although a k-step formula for the solution of a first-order

differential equation contains 2k + 1 constants, there exists no numer-

ically stable k-step formula of an order exceeding k + 1 (for odd k)

or k+2 (for even k). This means that the stability requirement

reduces the possible order 2k of such a k-step formula by k- 1 or

k- 2, respectively.

Only recently, W. B. GRAGG and H. J. STETTER _14] have succeeded in elim-

inating the stability restrictions of the classical multistep methods by introduc-

ing into the formulas one extra non-step point. Such modified multistep

formulas have been published by J. C. BUTCHER _ 8 _. His paper contains

numerically stable k-step predictor-corrector formulas of order 2k+ 1 for

k < 6. Since our paper deals with one-step methods, we shall consider one of

J. C. BUTCHER's new multistep formulas in Appendix C for comparison only.

In one-step methods, no information obtained from previously computed steps

is required. Most one-step methods are of the RUNGE-KUTTA type. In

RUNGE-KUTTA formulas the necessary information is obtained by repeated

evaluation of the differential equation at intermediate points somewhere between

the initial and the end point of the current step.
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Since the standard RUNGE-KUTTA formulas are of fourth-order accuracy only--

the truncation errors being of the fifth order of the step size--several exten-

sions of these formulas to higher-order accuracy have been achieved in the
V

last decade. We mention in this respect the work of A. HUTA _15_, [16],

J o C° BUTCHER [1_, [2], _3], [6 ], and E. B. SHANKS _18], [19]. The last

author has derived the most accurate RUNGE-KUTTA formula to date--an

eighth-order formula based on 12 evaluations per step.

Like all one-step methods, the RUNGE-KUTTA method is self-starting and

the integration step size can be changed at any time and can immediately be

accommodatedto the local conditiohs of the problem under consideration. In

this respect, RUNGE-KUTTA methods are well-suited to problems that re-

quire frequent changes in the step size. However, RUNGE-KUTTA methods

also have certain disadvantages. They are time-consuming, since they re-

quire a relatively large number of evaluations per step of the differential equa-

tions. Moreover, no economical method of step-size control seems to exist

for RUNGE-KUTTA formulas. Apart from somewhat doubtful rule-of-thumb

control procedures, there exists only L. F. RICHARDSON's well-known method

of the deferred approach to the limit. This method is quite reliable, but it

doubles the computational effort merely for the benefit of step-size controL.

This paper will describe some one-step methods that the author has developed.

They are essentially a combination of power series expansions and RUNGE-

KUTTA methods. When applicable, our formulas have definite advantages

compared with standard RUNGE-KUTTA formulas: they yield any order of

accuracy one might desire; they require only very few evaluations of the

differential equations; they include a very simple and economical method of

step-size control. We shall describe these new RUNGE-KUTTA methods in

detail in Section III.
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In Section IV we shall derive the equations of motion of the restricted prob'

lem of four bodies. Since this problem is of some practical interest in

astronautics, in Sections V and VI we shall apply our new RUNGE-KUTTA

procedure to this problem as well as to the restricted problem of three bodies.

For comparison we shall report, in the appendices, our experience with some

new methods developed by other authors. These appendices will give brief

descriptions and applications of the following methods:

Bo

The explicit RUNGE-KUTTA formulas of E. B. SHANKS (Appendix A).

The implicit RUNGE-KUTTA formulas of J. C. BUTCHER (Appendix B).

The modified multistep method of J. C. BUTCHER (Appendix C).

A short abstract of a part of this paper was presented at the Congress of the

International Federation of Information Processing (IFIP) in New York in

May 1965 [13]. This joint presentation, by S. FILIPPI and the author, also

included work by the authors on the LIE series method. Dr. FILIPPI intends,

at a later date, to publish the results of his LIE series investigations as a

NASA Technical Note.



SECTION I I. POWERSERIES EXPANSION METHOD

The integration procedures that we shall describe in this and the following

section are based on a power series expansion for the solution of the differ-

ential equations under consideration. Such a power series expansion requires

a repeated total differentiation of the differential equations with respect to

the independent variable in order to obtain the coefficients of the power series

expansion.

In the past, the repeated total differentiation of a differential equation was con-

sidered unfeasible, since, with increasing order, the derivatives become

rather unwieldy expressions. Today, with the advent of fast electronic com-

puters, such a procedure no longer seems necessarily unfeasible. It is well-

known that in the last few years considerable progress has been made in auto-

matic formula differentiation by computers. Apart from a straightforward

differentiation of the differential equations, a great number of differential

equations can be differentiated in a rather simple way after transforming

them--by introducing auxiliary functions--into algebraic differential equations

of the second degree. For special differential equations the procedure has

been outlined in earlier papers by J. F. STEFFENSEN [20], E. RABE [17],

and the author _10]. The procedure is based on the fact that the consecutive

derivatives of a second-degree system of differential equations can be con-

veniently obtained on a computer by recurrence formulas.

The procedure is best illustrated by a simple example.

differential equation

Let us consider the

dx
= e (1)

dt



We introduce the auxiliary function

e -x - u

and obtain from (1) and (2)a

equations

system of second-degree algebraic differential

dx du _ -u s= u, - (3)

Substituting the power series expansions

x = X v (t- to , u = Uv (t - to)

v=O v=O

into (3) and comparing coefficients for the terms with (t- to)n results in the

following recurrence formulas for the coefficients in (4)-

(n+l)Xn+ 1 = U n

n

(n+l)Un+ 1 = -E UvUn-_

x)=0

(n=0, 1, 2, ..... )

(4)

(5)

Since the first coefficient Xo is known from the initial value x(to) for the step

and the first coefficient Uo can be obtained from (2), all following coefficients

Xv, Uv (v- 1, 2, 3, ...) can easily be computed from the recurrence formulas

(5)--a very convenient procedure for electronic computers.

It is quite obvious that the power series expansion method allows--in an

extremely simple way--an automatic step-size control. Assuming that we

truncate the expansion (4) for x after the term X (t-to) n, the leading term of the
• n

truncation error of x can easily be found by extending the computation to the next

6



coefficient Xn+1. If the truncation error turns out to be too large or too

small, the step :size at At can immediately be adjusted in such a way that

IXn+ 1(At)n+1 ! remains within prescribed limits. For safety reasons it

might sometimes be advisable to consider more than just .one term of the

truncation error. In contrast to RUNGE-KUTTA or multistep methods, no

repetition of any computation is necessary ifthe step size fails to meet the

requirements for the magnitude of the truncation error. We know of no

other method that offers such easy step-size control.

Naturally, in our simple example No. 12, there is no real need to resort

to the introduction of auxiliary functions, since a repeated differentiation

of the differential equation (1)can be performed without difficulty. In Section

IV we shall present more involved examples that do not allow a convenient

repeated straightforward differentiation without the introduction of auxiliary

functions.



SECTION II I. RUNSE-KUI-rATRANSFORMATIONTYPE FORMULAS

In two earlier papers [11],[12], the author presented RUNGE-KUTTA type

formulas of high-order accuracy for the numerical integration of systems

of first- and second-order differential equations. These formulas require

a repeated total differentiation of the differential equations with respect to

the independent variable. After m total derivatives are determined at the

initial point t = to of the step under consideration, using, for instance, the

method of Section II, a transformation of the dependent variables of the

differential equations is performed in such a way that, in the case of second-

order differential equations,i the first m+2 total derivatives of these trans-

formed dependent variables become zero for t = to.

In the following we shall consider systems of second-order differential

equations only, since these are the ones most frequently encountered in

physics and mechanics. Moreover, our method is somewhat simpler in

the case of second-order differential equations, because the number of

RUNGE-KUTTA evaluations (including approximatioi_ of the truncation error)

is reduced by I compared with the corresponding procedure for first-order

differential equations.

Let x be the original dependent variable--for the sake of brevity we shall

write our formulas for one second-order differential equation

ii = f(t, x, ±) (6)

only, although they hold in the same way for systems. Let x T be the trans-

formed dependent variable. Obviously the first m+2 total derivatives of x
T

are zero for t = to if we define



x
T

m+2

x - Xv (t-to)

_=l

(7)

with the power series coefficients X v being defined as the _-th :derivatives

of x at t = t o, divided by the factorials _I.

From (7) it follows that

T

m+2

v-1- vx v (t-to)
X)=l

(8)

m+2

v-2- _ - v(v-1)X v(t-to)

v=2

m+2

v-2_T = f - v(v-1)X v (t-to) = fT

V:2

(9)

Equation (9) represents the transformed differential equation

_T = fT (t' XT' iT) (10)

for which we derived, in papers [11], [12], RUNGE-KUTTA formulas of

order m+4 as well as m+5.

These formulas require no more than four RUNGE-KUTTA evaluations of the

differential equations,including the determination of the leading term of the

truncation error for x T.

The small number of evaluations required is strictly a consequence of the

fact that the first m+2 derivatives of x T are zero for t =t o, since this be-

havior of the derivatives drastically reduces the number of equations of

condition for the RUNGE-KUTTA coefficients.



Since we have given a rather detailed derivation of our RUNGE-KUTTAfor-

mulas in papers _11_and [12], we restrict ourselves here to stating these

formulas andto explaining, with the help of a flow chart, how to program

our formulas onan electronic computer.

First, we shall state the formulas derived in paper [11] for the caseof second-

order differential equations. The method described in this paper requires

three RUNGE-KUTTA evaluationsof (10) to obtain (m+4)-th-order formulas for

xT and XT andone additional evaluation for an (m+5)-th-order formula for XT,
m always standing for the number of differentiations performed on the original

differential equation(6) at the initial t-value t = to of the current step.

Using the traditional notation, the formulas of paper [11] read:

and

k_ = fT(to + h, Xo, 0)h

ke = fT(t°+_h' xo+ _k_h, 0 + _kl)h

ks = fT(to +h, Xo, 0 +yk I+ 6ke)h

k¢ = fT(to+ %h, Xo+ Coklh,0 + ekl + _ke+ Tlks)h (h = step size)

xT- Xo = C_ol_eh +O(h re÷s)

,% ,% ,%

_:T- x° = (C2°ke+ C30k3 + C40k_)h+ O(hm+6)

XT-O = C2ke +C3k3+ O(hre+s)

From (7) and (8) there follow for the initial valffes of the current step:

(11)

(12)

xT(to) = x(to)(=xo), _:T(to)= 0 (13)

These values (13) have already been inserted into (11).

l0



The first two equationsin (12)yield two values, xT and _T' for t = to+h

that differ in accuracy by one h-power. Therefore, their difference canbe

considered an approximation of the leading term of the truncation error of

X w -

The constants in formulas (11) and (12) are given by the following relatively

simple expressions"

m+2 m+l
9% m+4 % = m+4

_ 2 (m+2_ m÷l
_o - (m+4) _ _m+41 ' Co

3 m-2 (m+l_ "+I
= 2-' (m+2)(m+4) 2 hn+4/

I (m+2_ m+i i 6 = 2 (m+4_ m
= m+4 \m+4/ ' Y = - m+2' m+2 kin+2)

+1

1 m-5. (m+l_ m
= 2" (m+2) (m+4) km+4) '

_3. 1 (m+l_ _
4 m+4 km+4]

+1

+i 5, I (m+l_ m+1
= -4 m+2 _,m+2)

(14)

1 (m+4¥
(m+2) (m+3) \rn+2)

+I

C2
i m+4 (m+4 

= 2" (m+2)(m+3) \m+-2]

+1

1 1 ^
C3 = _' m+----3' C_ =

3 (m+4_ m
(m+2) (m+3)(m+5 i _m+2!

+1

^ _ 1 1 _ _ 2
Cm - 3'(m+3)(m+5)' - 3"

1 (m+4_ m+
(m+3) (m+5) _rn+l]

It should be pointed out that the leading term of the truncation errors of x T

and _T is not particularly small in our formulas. The situation is somewhat

similar to that for the standard 4-th-order RUNGE-KUTTA formulas. In both

methods, a part of the respective (m+5)-th-order or 5-th-order terms in the

Taylor expansion for the solution is not covered at all. However, the extent

ii
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to which these leading terms of the truncation error are partially covered is

very essential for the accuracy of such a method. A good coverage of these

terms pays off by allowing a larger integration step size than in the case of

a formula of the same order but with a larger truncation error.

In paper [12] we presented formulas with smaller truncation errors than

those in paper [11]. In fact, in the formulas in paper [12], a parameter

is still available, and for sufficiently small values of a the absolute

values of all members of the leading truncation error term, for x T as well

as for _T' can be made as small as desired. However, they cannot be made

zero, since some of the weight coefficients of our formulas would become

infinite for (_-_ 0.

These more accurate formulas read as follows.

k_ = fT(to+ h, x_, O)h

ke = fT(to + %h, Xo+ _ok_h, 0 + _kx)h

k3 = fT(to-K_h, Xo+ Yoklh + 6okch, 0 + ykI+ 6k2)h

t% = fT(to+h, Xo, 0 +_k 1+ _k2+Tlk3)h

and

x T (C_k2 + C_k3)h + 0(hre+s)

A A

(C_k_ + Cmk3 + C4okc)h + O(h re*s)

XT - 0 = C_k_ + C3k3 + C¢l% +0(hm+5)

Again, the initial values (13) have already been inserted into (15).

The constants in (15) and (16) are no longer as simple as the expressions

(14). Expressed as functions of the parameter a, these coefficients read:

(15)

(16)



m+2 1 - o

- m+5(1-_)' % - l+'m+4'_tp_

1 %m +z

• )_[3 + (m+2)(_][1 - (m+6)a]2 (m+5

1-o

m+5

1 1
--e

Yo = -2 m+2 %
m+l

1+ (m+4)J [2 11+ (m+4) _ ]1 + (m+4)_ +m_ + (m+4)_

y = _%_+1 1-a
m+2

2 - (m+3) (m+4.)(_

[1 + (m+4)(_ ]_

_ 3 (_m +z 1 + (m+4)o
8° m+2_%] -o,(I-o)[1_ (m+4)oa] 2 _+z 1-a 3- (m+2)(m+4)c 2

._ • • •

m+2 [I + (m+4)o2] 2

2 1 -

m+2 1 - 2(m+4)o- (m+2)(m+4)o 2

1 1 1

--%re+i'm+2 1-o

[3 + (m +2 ):g] [3 - (2m,+ 13)(7 + 3 (m+4)_ + (m+2).(m+4) (m+6)_]

[3 - (m+2)(m+4)o2][1 -2 (m+4)o - (m+2)(m+4)._]

1 _ [3+ (m+2)_][1 + (m+4)_][1 + (m+4)_]

I"I = -_-_i" 1 - a" [3 - (m+2)(m+4)o_][1 - 2(m+4)o - (m+2)(m+4)o2J

1 m+5 1

Cm = c_m+i"(m+2)(m+3)(m+4)' 1 - o'

2 - (m+4)o- (m+2)(m+4)_

3 - (m+2)(m+4)o _

1 1 1

Ca) = _, +---$'(m+3)(m+4)" I ' (3"

[1 + (m+4)o][1 + (m+4)c_

3- (m+2) (m+4)_

1 • (m+5,) a . 1 2-(m+4)g-.(m+2)(m+4)_

C2 = %m+1" (m+2)(m+3)(m+4) 1 -_ [3 - (m+2)(m+4)_[3 +(m+2)_]

I i 1 , [1+(m+4)_] 2

Ca = _,+i" (m+3)(m+4)" o(1-o) 3 - (m+2)(m+4)_

C4: "-- _

1 i. 1 - (m+4)g- (m+4)(3m + 10)_ q(m+2) (m+4)2 o_

(m+3)(m+4) 0 [I + (m+4)o][3 + (m+2)(_]

^ _ 2 m+5 . 1 3 - (m+5)(_ - (m+2) (m+4)o 2

Cm - %m+1' (m+2)(m+3)(m+4) 1 - a" [3+ (m+9)cr][3 - (m+2)(rr,+4)o a]

,, _ 2 i I

Ca %m+I (m+3)(m+4) l-a

[1 + (m+4)_] _

[1 + (m+4)g][3 - (m+2) (m+4)_]

^ 1

C4o = - (m+3)(m+4)

1 - 2(m+4)g- (m+2)(m+4)_

[1 + (m+4)ff_[3 + (m+2)(_] J

> (17)

13



In paper [12] these coefficients (17) are tabulated to 24 digits--for m-3

through m = 8. The parameter o is always chosen in such a way that the

absolute values for the critical coefficients C3 and C4 are about 1/2 or less.

The advantage of these more accurate formulas over the earlier formulas

(11), (12), (14} will show up clearly in the examples in Section VI.

It might be helpful to illustrate the application of our RUNGE-KUTTA pro-

cedure by means of a flow chart, as is customary for computer programs

As Figure 1, we present a flow chart for our more accurate formulas (15),

(16). The flow chart for our earlier formulas (11), (12) is almost identical

with the flow chart in Figure 1.

_ Coefficients Xn (n =2, 3, 4, .. ,, m+2) =

=to+h, (XT)l=Xo, (iT) 1 =0 e ........
t_=to+c_h. (XT)_=Xo+_oklh. (_T)_=_kl

___ t3 = to+C%h (XT)3 Xo+¥0klh+501_h, _: =, = ( T)3 Ykl+Sl_

_: ta = to+h , (XT) 4 = Xo, (_T) 4 = ckl+:_:k2+rlka =......

+T X (XT m++f
v-1

" xt = (XT)i .(ti-to) . :_i = )i vXv(ti-to) 0 =1, 2.3.4)
V=l _)=Il

. f_ m+2

_ V (v 1)X (t.-to) v-2
(fT)t= fl-

y=2

k_= (fT),h _i=1.2,3i=4

Truncation Error: Tx = [(Cm-C_o)l%+(C_o-Cso)ks-C_k4] h

! 81 Test for step size

C Take double or half step size

[_] = xo+(Cmk_+Ca3ks)h, _: = C_+Csks+C4k,_Final. x T T

[_ m+2 m+fFinal. x = XT+_ X h v, :_ = _T + vXvh v-1 .

V=l v=l

Next step

i_1

i=3

FIGURE i. FLOW CHART
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After having computedin _J the power series coefficients Xn(n--2,3, .... ,m+2)

for the original differential equation (6)by the method indicated in SectionII,

then in _] we introduce the proper arguments t, xT, _T for the RUNGE-KUTTA
evaluations of the transformed differential equation(9). However, since we

haveto deal with the original differential equation(6) instead of (9) we proceed

Jr,_ from xT andXT to x and _ andevaluate :in _i, for these arguments,

the right-hand side of (6). In _ we computethe right-hand side of (9), since

our RUNGE-KUTTA procedure holds for the transformed differential equation

(9) only. By multiplying by h we obtain in _ the k_-values (15)for the

transformed differential equation (9). After having computer all four k!-values

(i=l, 2, 3, 4), we determine in D the approximate truncation error for x T.

If necessary, the step size now has to be adjusted (by halving or doubling) in

such a way that the truncation error remains within pre-set tolerances. After

the step size has been checked and found to be satisfactory, the final values

and _T for the end of the step are computed in _ from the first and the
X w

third equation of (16). In _ , at last, the final values for the original

variables x and _ are computed for the end of the step, and we are ready for

the next step.

and _ of our flow chart is somewhat facili-The computational work i n

tared by the fact that certain of the time increments in our RUNGE-KUTTA

formulas are equal, namely tl-t o = t_-t o = h. This means that the sums of

and _] have to be computed three times only, and no new computation of the

sums in [10] is necessary.

to _ and _ , xl=x_. This means that for theFurthermore, according
k_....J

of f_ in _ the part of f that depends on t and x but not oncomputation

could be taken over from the computation of fl. In some cases--for instance

equations (24) or (26)--this might practically reduce the number of evaluations

of f by 1, as it does exactly in the case where f does not depend on _ at all.

15



SECTI0N IV. THE EQUATI0NS 0 F M0TI0 N F0 R THE
RESTRiCTED PR0 BLEM 0 F F0 UR (THREE) B0 DiES

16

The restricted problem of four bodies is based on the following assumptions:

Ae

Be

Ce

De

All four bodies (sun, earth, moon, space vehicle) are considered

to be point masses that move in the same space-fixed plane.

The Center of mass of the earth-moon system moves with constant

angular velocity w in a circle around the sun.

The earth and the moon move with constant angular velocity in

circles around the center of mass of the earth-moon system.

The fourth body, the space vehicle, is of infinitesimal mass. Then,

although attracted by the gravitational forces of the sun, the earth, and

the moon, it can be considered to exert no gravitational forces on these

bodies.

In the space-fixed plane (Figure 2) we consider two different coordinate sys-

tems:

Ae

Be

The space-fixed _-system with the sun S as origin (¢ = _ + i_).

The body-fixed z-system with the center of mass C of the earth-moon

system as the origin and the direction from the earth to the moon as

the x-direction (z = x + iy).

P
Y e x

M

FIGURE 2. SPACE-FIXED PLANE



As is customary in the restricted problem of three bodies, we choosethe

mass of the earth-moon system as the mass unit, the distance from the

earth E to the moonM as the unit of distance, andthe time unit in sucha

way as to make the angular velocity of the earth-moon system around its

center of mass C equalto 1. This implies that the gravitational constant in

Newton's gravity law becomesequal to 1.

Let b,S, 1,_, _, and m be the masses of the sun S, the earth E, the moon

M, and the space vehicle P, respectively, and let 0, _E' _M, and _ be their

respective coordinates in the space-fixed _-system. To derive the equations

of motion of the space vehicle we start from the Lagrangian function obtained

for the space vehicle under the assumptions of the restricted problem of four

bodies. Obviously, in the space-fixed _-system the Lagrangian function

L = T- U for the space vehicle reads as follows-

m m (1 -bt) m_ mbi S

L = -_-!_7la + is__gEI + I_'SVM! + -igl- (18)

It is customary in the restricted problem of three bodies to study the motion of

the space vehicle in the body-fixed rotating z-system. We shall use the same

z-system for the restricted problem of four bodies. The following relations

obviously hold between the coordinates in the _-system and the z-system:

- z ei(t+ct)+ Re i°ut

i(t+_) + Rei_)t- -[.t e

i(t+_) i00t
_M = (1-_)e + Re

(19)
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It follows from (19) that

It tEl : Iz+ l; It tM!= Iz

and by differentiation

= (_+iz)e i(t+&)+ RiweiWt

I_l = Iz+Rei_(w-1)t-&]] (20)

or

I}1 = !(_+iz) +iwRei[(w-1)t-c_]l

Introducing (20) and (21) into (18), we obtain for the Lagrangian function L in

the body-fixed rotating z-system

mL = _- I(_+iz)+iwRe iE(w-1)t-c_] + lz_(Im_, )l +
lz + Re i E(w- 1)t-c_] I

(21)

(22)

24. The equations of motion for the space vehicle in the case of the restricted

problem of four bodies are then obtained from the Lagrangian equations of the

second kind

= 0

d (_.L) bLdt _ 0

(23)

by inserting expression (22) for L.

The insertion results in the following equations of motion for the space vehicle

in the case of the restricted problem of four bodies, as can easily be verified:

I

.. i x +_ x-_ x + R cos ¢p

x = 2_ + x +_R cos M-_ [(x+_)_+y_]a/_ -_ _(x-_ '_) +y-_]2a_-_S _(x+R cos M)_+(y-R sin M)2_3/2

•" I Y Y y -R sinM

y = -2_: + y - w_R sin M-_ [(x+_)%y_3/_ - _ [ix,j)e_ayz]3/_ -_S _(x+R cos q_)2+(y-R sin _p)213/_

, (24)
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using the abbreviations

l

_t = 1 -_; q0 = (1-w)t +
(25)

Omitting from (24)the terms contributed by the sun, our equations (24)

reduce to the equations of motion for the space vehicle in the case of the

restricted problem of three bodies"

I

x + gt x-

2_+x -_ [(x+_)_+y_/_-:_[ix_')_+y_?/_

i y Y

-23¢+ y - _ [(x+_)_ + y_]3/_- _ [ix __')_+_3/_

Equations (26) yield a first integral that can be obtained by multiplying the

first equation in (26)by _ and the second equation by _, then adding both

equations and integrating with respect to time t. The result is

(26)

I

1_ +_) _ (x_+f)]_[(x+_)_+y_]_f-E-T_-_')_+y_]_/_2

= C onst = J (27)

the so-called Jacobi integral.
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SECTION V. THERUNGE-KUTTATRANSFORMATION METHOD
APPLIED TO THE

RESTRICTEDP ROBLEMOF FOUR (THREE)BODIES

26. Since we have explained our RUNGE-KUTTA transformation method in detail

in Section III, we can now restrict ourselves to the problem of reducing the

equations of motion (24)to an algebraic system of the second degree and de-

riving the recurrence formulas for the coefficients of the power series ex-

pansion for the solution of this second-degree system.

In a completely obvious and straightforward manner, we introduce the follow-

ing eight auxiliary functions into (24):

cos ¢p = a, sin q0 = b

(x_)_+y_=_, (x-_')_-_ = ,f,
, laSla la

-_-5=u, -_=v, -_-=w

(x+Ra)_+(y-Rb) _ = r _ (28).

Including the equations and differential equations for these auxiliary functions,

we obtain the following second-degree system instead of (24)-

\
- 23_ +x +w_Ra - u(x+_) - v(x-j) - w(x+Ra)

= -2_: + y -a_ Rb - uy - vy - w(y-Rb)

= -b(1-co)

1_ = a(1-a_)

p_ = (x+u)_+y_

q_ = (x-_') _+_

r _ = (x+Ra)2+ (y-Rb) _

p6+3u15 = 0

q_r+3v_t - 0
:.

rCv + 3w _: = 0

(29)
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One might, at first glance, get discouraged when faced with ten equations.

However, since system (29) is an algebraic system of the second degree,

its numerical integration by power series expansions is completely trivial

and is performed in exactly the same way as in the case of our simple example

(1) in Section II.

Let us denote the coefficients of the power series expansion of the functions

x, y, a, b, p, q, r, u, v, w by the capital letters Xv, Yv' A_, B._, P_, Q_,

R, U_, Vv, Wv, respectively.

By introducing the power series expansions

x - (t-t o) , y = t-to), -.., w = (t-to)

x_=O v=O x_=O

and their derivatives, if required, into (29)and comparing coefficients of

equal powers--for instance, coefficients of (t-to) _'1 or of (t-to)n--one obtains

in a completely straightforward way, the following recurrence formulas for

the ten functions occurring in (29).

_,In+l_nXn+ 1 = 2nY +X +w2RAn n-1 n-1

n-1

- Z (U v +Vv +Wv)Xn_ 1 -'_
v-O

U n- 1+ _' V n- 1

n-1

- RZW_An_ 1_ .

_=0

(n+l)nYn+l

n-1

= -2nX +Y -weRB ->" (U +V+W_)Yn n-1 n-1 _ n-l-_
x;=0

n-1

+RZWB n-l-_)

_=0

nA = -(I- w)B
n n- 1

(30)
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nB
n

2P P
0 n

2QoQ n

2R R
o n

nPU
o n

= (l-w)An_ 1

n

E XvX + 2_Xn+n-M

_=0

n

_) n-v
_)=0

n n-I

gY,n-_) v n-v

_=0 _=1

n n-I

- 2_'Xn+E YYn-'°- E Q_)On-v
_=0 _=I

n n n

n-9 _ n-_ _ n-_)
v=0 _=0 _=0

n

+E YY'0 n-M

_=0

n n

-2R EY B_ n-'_+R2 E
=0 '_=0

n

= -3 E 9PgUn-9-

_)=I

nQoVn = -3

n-1

%B - %Rn-_ n-_)
V=l

n-I

_)=I

n n-I

E'00 V -E'_V,oO_) n-_) n-'_
_)=I _)=I

n n-I

nR W = -3E'oR W -Ex)WRo n '_ n-'_ '_ n-'_
_)=I _)=I

(3O)

(continued)

For n = 1, all sums in (30) with the lower limit 9= 1 and the upper limit 9 = n-1

have to be omitted.

When we start the computation for a certain step, we know, from the initial

values for this step, the coefficients X X 1 and Y , Y From (28) we thenO' O I"

obtain the coefficientsA, B , P , 0 , R , U , V , W . Settingn-i, we
O O O O O O O O

find from (30)the coefficients X2, Y2' AI' BI' PI' O1' RI' UI' VI' Wl' and

we continue by repeating the evaluation of the recurrence formulas (30) for

n = 2, n = 3, etc. After having obtained in this way the coefficients X2, X3,

• .., Xm+ 2 andY2, Y3' "'" Ym+2' we are ready for our RUNGE-KUTTA

transformation procedure as described in Section III.
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In the caseof the restricted problem of three bodieswe start from equations

(26) instead of equations(24). Equations (28) reduce, in this case, to four

equationsonly. In a quite obviousway, (29)then reducesto six second-degree

equations, and (30) reducesto six recurrence formulas.
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SECTION VI. SOME NUMERICAL RESULTS

FOR THE
RESTRICTED PROBLEM OF THREE (AND FOUR) BODIES

28. In this section we present some of the numerical results we have obtained by

applying the power series method (Section II)and our two RUNGE-KUTTA

transformation methods (Section HI) to the computation of a periodic orbit of

the restricted problem of three bodies, and to the computation of the corres-

ponding orbit--with the same initial conditions--for the restricted problem of

four bodies.

29. Figure 3 shows, for the case of the restricted problem of three bodies, this

periodic orbit in the rotating coordinate system.

Y

0.5]

t.6

4f.O

t"l

FIGURE 3. PERIODIC ORBIT IN THE ROTATING COORDINATE SYSTEM
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The periodic orbit was used in previous papers by the author and has the

following initial values:

xo = 1.2, _o = o, yo = o, .% = -_. o4935 7509s 3o32o = 82.45

The initial value _o in (31) was obtained by an interpolation procedure that

varied )o iteratively until the orbit, after half a period, finally crossed the

x-axis perpendicularly. To preserve sufficient accuracy, the computation of

5to for the periodic orbit was performed in 20-digit arithmetic.

The computations presented in all tables in this paper were executed on an

IBM 7094 digital computer (16 digits).

Tables I and II list the results that we have obtained, in the case of the re-

strieted problem of three bodies, by the methods described in Sections II and

III for one orbit (about one month aetuaI time), and for 12 consecutive orbits

(about one year actual time), starting from the initial values (31). The pro-

:gram came to an automatic stop when the orbit intersected the x-axis again

after one or 12 complete orbits, respectively. The last point of intersection

with the x-axis was obtained by continuously halving the step size for the last

step until we missed the x-axis by less than a pre-set tolerance (10-_7).

Table I refers to eighth-order formulas (m=4) and Table II to twelfth-order

formulas (m = 8).

TABLE I. RESTRICTED PROBLEM OF THREE BODIES,

RESULTS FOR EIGHTH-ORDER FORMULAS

No. of

Method* Orbits

PSE

Final x Final 2¢

RKT 1

No. of Computer Running

Steps Time (min)

RKT 2

1 1.200000000000040 -!.049357509830345 1594 0.35

1 t.200000000000103 -1.049357509830421 1120 0.24

1 1.200000000000038 -1.049357509830366 840 0.19

PSE 12 1.200000000000031 -1.049357509830440 19134

RKT1 12 1.200000000000.430 -1.049357509831333 13459

RKT2: 12 1.200000000000010 -1.049357509830525 10080

(See footnote at end of Table II. )

4.20

2.78

2.11
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TABLE II° RESTRICTED PROBLEM OF THREE BODIES,

RESULTS FOR TWELFTH-ORDER FORMULAS

NO. of

M e thod* Orb it s

PSE

Final x Final y

1 1.199999999999981 -1.049357509830303

No. of Computer Running

Steps Time (min)

493 0.21

RKT 1 1 1. 20000 00000 00001 -1. 04935 750:9830321 389 0.15

RKT 2 1 1. 20000 00000 00013 -1. 04935 75098 30332 290 O. 13

PSE 12 1.200000000000071 -1.049357509830531 5896 2.49

RKT 1 12 1. 19999 99999 99991 -1.0.4935 75098 30373 4740 I. 83

RKT2 12 1.200000000000097 -1.049357509830627 3353 1.35

PSE = Power Series Expansion Method [10]

RKT 1 = Runge-Kutta Transformation Method [11_

RKT2 - Runge-Kutta Transformation Method E12_

All methods listed in Tables I and H were run with automatic step-size con-

trol for every step. The step size was accepted if for this step size At--but

not for double the step size 2.At .... the absolute value of the truncation errors

Tx and Ty in x and y were smaller than lxol-10 -16, _o1,10 -16, respectively, with

xo and Yo standing for the initial values for x and y for the current step.

Comparing the computer running time in both tables, it becomes evident that

twelfth-order formulas require considerably less computer time than eighth-

order formulas--not to mention the prohibitively slow fourth-order standard

RUNGE-KUTTA formulas. In fact, our twelfth-order formulas require only

about 60 to 65 percent of the time for the eighth-order formulas. This time

saving for the twelfth-order formulas is a consequence of the smaller number

of steps required for a twelfth-order formula (only about 1/3 of the number

required for an eighth-order formula in our example).

Moreover, Tables I and II show a significant time saving for our RUNGE-KUTTA

transformation method compared with the power series expansion method. Our
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more recently developed RUNGE-KUTTA transformation method (RKT 2) gives

results of about the same accuracy as the power series expansion method (PSE)

in about half the computer time.

As the x- and _-values of the tables show, all three methods are of about the

same accuracy for equal tolerances; after 12 orbits we lost, in all methods,

about 2 to 3 digits in x and _. This means that even after 12 orbits we miss

the initial value _ of (31)by only about 1/100 millimeter actual distance--

certainly a negligible deviation.

We now turn to the restricted problem of four bodies. For this problem we com-

puted an orbit with the same initial conditions (31) that we used for our periodic

orbit (Figure 3) in the case of the restricted problem of three bodies. The re-

sults of our computations, if compared with our previous computations, will give

an indication of how the attractive force of the sun affects our orbit of Figure 3.

Naturally, the periodicity of our orbit is lost if the influence of the sun is taken

into account. However, the shape of our orbit remains approximately pre-

served for a surprisingly long time. Since the differential equations (24) for the

restricted problem of four bodies are more involved t_n the corresponding

differential equations (26) for the restricted problem of three bodies, the numeri-

cal integration of equations (24) naturally took longer on the computer--about

twice as long as for equations (26).

In Tables III and IV we list our results for the restricted problem of four

bodies. We use the starting values (31) and set c_= 0 in (25). These assump-

tions mean that sun, earth, moon, and space vehicle are initiallyall located

on one straight line. We also made machine runs for other values for _. How-

ever, because these changes in the configuration of the bodies do not produce

any essential changes in our results, we can restrict ourselves here to pre-

senting only the case where c_ = O.
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TABLE HI. RESTRICTED PROBLEM OF FOUR BODIES,

RESULTS FOR EIGHTH-ORDER FORMULAS

No. of

Method* Orbits

PSE

Final x Final

1 1. 19033 91358 54073 -1. 02487 19211 55096

No. of Computer Running

Steps Time (min)

1578 O. 67

RKT 1 1 1. 19033 91358 54174 -1. 02487 19211 55201 1117 O. 58

RKT 2 1 1. 19033 9135854125 -1. 02487 19211 55176 835 O. 43

PSE 12

RKT 1 12

1. 17279 62121 74518 -1. 01782 10547 51673 18144

1. 17279 62121 75284 -1. 01782 10547 52938 12954

7.69

6.61

RKT2 12 1.172796212174671 -1.017821054752064 9723 5.00

* See footnote at end of Table _.

TABLE IV. RESTRICTED PROBLEM OF FOUR BODIES,

RESULTS FOR TWELFTH-ORDER FORMULAS

No. of

Method* Orbits

PSE

Final x Final

1 1. 19033 9135 8 54114 -1. 02487 19211 55165

No. of Computer Running

Steps Time (min)

485 O. 38

RKT 1 1 1. 19033 91358:54016 -1. 02487 19211 55062 401 O. 34

RKT 2 1 1. 190:33 91358 54004 -1. 0248:7 19211 55048 287 O. 27

PSE 12 1. 17279 62121 74782 -1. 01782 10547 52114 5598 4.35

RKT 1 12 1. 17279 62121 74791 -1.01782 10.547 51654 5125 4.14

RKT 2 12 1. 17279 62121 74737 -1. 01782 10547 51634 3280 2.73

* See footnote at end of Table II.

In our machine programs we again applied exactly the same automatic step-size

control procedure, including the same tolerances, and the same procedure for

the last (closing)step as in the case of the restricted problem of three bodies.
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Since, in the case of the restricted problem of four bodies, the numerically

correct values for our problem are not known, we can try to determine the

accuracy of our methods only by comparing the results for the different methods.

Lacking a better criterion for accuracy, it seems reasonable to assume that

those digits in the final values for x and _ which are in agreement for all

methods are correct. But again, then, we do not lose more than 3 digits

even after 12 orbits. This means, again, that the deviations in x among the

different methods and the true solutions are, after 12 orbits, still of the order

of 1/100 millimeter. With respect to saving computer time--whether using
:

twelfth-order formulas instead of eighth-order formulas or using our RUNGE-

KUTTA transformation method instead of the power series method--we

obtained about the same results as for the case Of the restricted problem of

three bodies.

The orbit that we have considered is not perturbed very much by the influence of

the sun, at least not for the first year for which we have run our computations.

The deviations in x from xo = 1.2 to x = 1. 17279... after 12 orbits correspond

to a deviation of about 10,460 kilometers, which is less than one earth diameter.

We also determined the x-deviations for the 1st, 2nd, 3rd .... , llth orbit;

they never exceed one earth diameter and seem to have an oscillatory behavior.

However, periodic orbits of the restricted problem of three bodies which come

closer to the moon than does our orbit turn out to be more sensitive to the

influence of the sun andthe moon. For such orbits, our model of the restric-

ted problem of four bodies might no longer be sufficiently realistic. One

might have to include the ellipticity of the moon orbit to obtain a satisfactory

approximation of the real conditions. But, since this paper is mainly concerned

with numerical integration procedures, we did not proceed further in the direction

of a more realistic model.
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The methods described in this paper are, however, applicable to considerably

more involved problems than the restricted problem of three (or four) bodies.

Actually, these methods have been applied in our Computation Laboratory to

the problem of N oblate bodies as well as to the problem of the powered flight

of a space vehicle--in both cases with rather favorable results.

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

Huntsville, Alabama, June 1, 1966
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APPENDICES

In Appendices A through C we present summaries of some other numerical

integration methods: that we found interesting or promising and that are

applicable to problems such as we have described in Section IV.

Since these methods were developed and published by other authors, we:

restrict ourselves to presenting short descriptions without any :derivation

of the formulas. However, we shall give sufficient references to the origi-

nal papers.

In these appendices we also present, for comparison, some numerical re-

suits obtained for these methods, applied to the problems of Section W.

We have tried to give an unbiased review of the methods in question, but it

should be understood that we have based our opinion of these methods on their

practical applicability to problems in celestial mechanics, such as we have

described in Section IV.
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APPENDIX A

HIGH-0 RDEREXPLIC IT RUNGE-KUT]"A F0 RMULAS

In this appendix we consider the explicit RUNGE-KUTTA form_as of

E. B. SHANKS _18], _19]. These formulas represent a remarkable ex-

tension of the traditional 4-th-order RUNGE-KUTTA formulas to higher-

order formulas. Naturally, the number of evaluations per step of the
.

differential equations increases with the order of the formulas:. However,

the increase is not so sharp as to make high-order formulas uneconomical

for an electronic computer. On the contrary, since higher-order formulas

permit--without loss of accuracy--a larger step size than 4-th-order for-
t

mulas, the differential equations can be integrated in considerably fewer

steps. This more than compensates for the increased computational

effort per step in such high-order formulas.

34. The most interesting and highest-order formula of E. B. SHANKS is an 8-

th-order formula based on 12 evaluations of the differential equations. We

restrict ourselves to quoting this 8-th-order formula and applying it to::!ithe

problems of Section IV;. .....

E. B. SHANKS' 8-th-order formula reads, when written in the traditional

notation:
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i!_ _i

ili i !:!i_iiii̧ !:i ..... , i ¸iii¸! iiiiiiii!%iiiiii _

k l = f(to,xo)h

t o 1ke - f +_h,x o

It I I Ike )k3 = f +_h,x o +_-_k x +-_ :h

t o 1k 4 - f +_h, xo +_k_ +_ h

to Iks- f +_-_h, xo 33 3 1%)+ -_ ks - 125 h

t 1k_=f o+_h II I _ 125k_ ), xo + 3--_ k_ + _-'_ k4 ÷ -9--#--_ :h

to 1 7 191_ = f: +_h,x o - _-_k 1 +--_-k,_ + 125 9 ks )_k_-_ h

to 2 I0 32k s = f + _h,x o --_-1_- 243k4 125 ii kT)+ _-_ 1_ + _-_ h

t o I I175 32 3125 121 i )= f +'_'h, xo + k.j.---_-k 4 - k_ + 261% + -324 162 _k7 -_k 8 h

(to 5 293 71 1375 51 59 1 )kl°- f +6 h'x° + 324 kl -2-7 k4 - 324 ks +-9 -ks - 162 k7 +2 ks + ks h

t 5 13o3 71 13v5 37kll = f o +_h, xo + 1620kI - _-_k4- 324 ks +-6-ks + 103 I o)16---_k7 +_-_k I h

kl_ - f(t o+h,_-
955 2560 8125 612 7

492 kl + -----k4 + _k_- k 6 + kv369 738 41

27 18 12
t64ks - _-k 9 - -_klo

i
x = xo +-_-_ (41k 1 + 216k s + 272k_ + 27ks+ 27k_ + 36k m + 180kii + 41klz) + 0(h9)

_ (A-l)

We have programmed SHANKS' formulas (A-l) for the restricted problem of

three--as well as four--bodies. Since no better step-size control procedure

seems to exist for SHANKS' formulas, we have applied RICHARDSON's de-

ferred approach to the limit. This, naturally, is a considerable additional
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computational effort merely for the benefit of step-size control.

We have run the orbits of Section VI with SHANKS' formulas (A-l} on the

same electronic computer and with the same tolerance 10 "_'8 that we used for

the various methods for which we listed numerical results in Section VI.

The following Tables, A-I and A-II, present the results of the runs we made

_th SHANKS' formulas for one orbit.

TABLE A-I. RESTRICTED PROBLEM OF THREE BODIES

No. of

Method Orbits Final x Final

RKS* 1 1. 20000 00000 00002 -1. 04935 7509830310

No. of

ste_ A

814

Computer Running

Time (rain)

0.46

TABLE A-II. RESTRICTED PROBLEM OF FOUR BODIES

No. of No. of

Method Orbits Final x Final _ Steps

RKS* 1 1 19033 91358 54033 -1"i 024871921155064 817

Computer Running

Time (m in)

1.63

* RKS = R_GE-KUTTA-SHANKS (8-th-order form_a)

The accuracy of SHANKS' formulas (A-l) is quite impressive. Comparison of

the final values in Table A-I with the initial values (31) shows that we iose

only 1 digit in x and 2 digits in _r. This is somewhat less than we lose in

Table I for the power series expansion method and our RUNGE-KUTTA trans-

formation methods when set up as 8-th-order methods. The running time for

SHANKS' formulas, however, is considerably longer than for the methods of

Tables I and III. In the restricted problem of three bodies SHANKS' method

takes about twice as Iong as our RKT 2 method, and in the restricted problem
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of four bodies almost four times as long.' The numerousevaluations--required

by SHANKS'method--of the trigonometric functions sin cpandcos q0,occurring

in equations (24), accountfor the relatively long running time for this method

in the caseof the restricted problem of four bodies. The presenceof trans-

cendentalfunctions in the differential equationswill always slow SHANKS'

method, since in his 8-th-order form_a these functions haveto be evaluated

23 times per step (including step-size control procedure) versus 4 evaluations

per step for our RUNGE-KUTTAtransformation formulas.

Naturally, in our methodsin SectionsH andHI we must also pay for the com-

putation of the derivatives that are required in these methods. However, the

computation (especially of the lower-order derivatives) is rather easyand

fast by the use of our recurrence formulas.

SHANKS'formulas might gain considerably if a less expensivebut still reliable

step-size control procedure were available for them.

However, since SHANKS'formulas are of 8-th order at best, one cannotex-

pect them to competewith our higher-order formulas, as a comparison of

Tables A-I andA-II with the first part of Tables II and IV clearly indicates.
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APPENDIX B

HIGH-0 RDER IMPLICIT RUNGE-KUTTA F0 R/VlULAS

In explicit RUNGE-KUTTA formulas--for instance, Formula (A-l)--the com-

putation ofthe increment kv requires a knowledge of only the preceding in-

crements k_, k_, ... k_)_1. Therefore, in explicit RUNGE-KUTTA formulas,

all increments k_)can be computed one after the other in one procedure.

In implicit RUNGE-KUTTA formulas the increment k_)depends not only on the

preceding increments k_, ke, ... k_)__but also on k_)itselfand on the succeed-

ing increments k_+1, k_÷_, .... Therefore, in implicit RUNGE-KUTTA for-

mulas, the increments k_ have to be determined by an iterative procedure.

Naturally, such an iterative computation is more involved than the straight-

forward procedure for explicit RUNGE-KUTTA formulas.

However, there are some points in favor of implicit RUNGE-KUTTA formulas.

For instance, implicit RUNGE-KUTTA formulas are available for any order,

whereas no explicit RUNGE-KUTTA formulas exceeding the 8-th order are

known so far.

Implicit RUNGE-KUTTA formulas have been studied by J. KUNTZMANN and

his collaborators. We mention as a reference the textbook of F. CESCHINO

and J. KUNTZMANN [9 ]. More recently, J. C. BUTCHER has published

two noteworthy papers on implicit RUNGE-KUTTA methods. In these

papers he derived various implicit formulas based on the quadrature formula

of GAUSS-LEGENDRE [4] or on quadrature formulas of RADAU [5]. The

latter form_as have the advantage of requiring fewer iterative k9 stages than

the form_as based on the GAUSS-LEGENDRE quadrature formula. In a

36



i ii ii i !iiiii iiiiiiii!ilii ii!i!iii!i!ii !i i i i! i i iiiiiiiiiiii!iiiiiii!iiiii!iiiiiiiiiii!iiiiiiiiiiiii!ii!iiii!iiiiiii!iiiiii!i!i!iii!iili iii!i!iii!!ili!!ilI_ __/_̧̧ _V_¸_//_¸¸_/¸¸¸¸_¸¸¸_¸V_¸_¸¸¸_¸_¸_¸_¸_¸¸_¸.¸_¸¸_¸_¸¸_¸_¸_¸_¸_¸_¸_¸_¸_¸_¸__'_¸I_¸¸¸¸_¸__ii_i iiiiiii?!i!!ii!!!ii!i_I_iiiii!̧

separate paper [ 7 ], J. C. BUTCHERpresents 20-digit tables for the coeffi-

cients of his implicit RUNGE-KUTTAformulas (up to the 20-th order).

Let us illustrate the procedure for implicit RUNGE-KUTTA formulas by quot-

ing one of BUTCHER's 8-th....order formulas basedonRADAU's quadrature

formulas:

k_

k_

k_

k6

= f(xo)h

- f(x o + _k_+ _k_ + _5_ka + _41%)h

= f(xo + _ak_+ _k2 + _a_k3 + _1%) h

= f(xo + _m k_+ _k_ + __ + _l%)a

(B-l)

x - Xo+ C_k_ + C_ke + Csk_ + C_k_ + C_I_ + O(h9)

It is assumed that the independent variable t does not appear explicitly on the

right-hand side of the differential equation. This is no restriction, however,

since by the introduction of an additional dependent variable (which is identical

with t) the independent variable t can always be eliminated on the right-hand

side of the differential equation.

From (B-l) it follows that these implicit RUNGE-KUTTA formulas, which

correspond to SHANKS' formulas (A-l), have only three iterative stages (k_,

k3, k_)and only five stages altogether.

Formulas of 12-th-order of the type (B-l) would contain five iterative stages

and seven stages altogether.

In (B-l) one first computes k_ and starts the iteration for k_, k_, 1%by introduc-

ing into the right-hand side of the 2rid, 3rd, and 4th equation the value kl as the

first approximation of k_, k_, 1%. After the iteration procedure has converged

to the final values ke, k_, 1%, the last two equations of (B-l) yield t% and the

x-value for the end of the step.
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J. C. BUTCHERhaspointed out that a step-size control procedure is possible

for formulas of the type (B-l)by combiningthese formulas with implicit

RUNGE-KUTTA formulas of the sameorder but basedon the GAUSS-

LEGENDREquadrature formula. This means, however, that the computa-

tional effort has to be doubledto obtain a reliable step-size control. In this

respect, one is facedwith the samesituation as in the caseof explicit

RUNGE-KUTTA formulas.

Using BUTCHER's formulas of the type (B-l), and for step-size control the

corresponding formulas of the GAUSS-LEGENDREtype, we againcomputed

the orbit of SectionVI for the restricted problem of three bodies.

Table B-I presents the results of the runs we madewith BUTCHER's 8-th-

and 12-th-order formulas.

TABLE B-I. RESTRICTED PROBLEM OF THREE BODIES

Method

RKB (8)

RKB (12;

No. of
Orbits Final x Final

1.200000000000010

1.20000 00000 00013

-1. 04935 75098 30318

-1. 04935 75098 30328

No. of Computer Running

Steps Time (min) ......

870 1.56

216 0.88

RKB (8)

RKB (12)

= RUNGE-KUTTA-BUTCHER (8-th-order formula)

= RUNGE-KUTTA-BUTCHER (12-th-order formula)

The runs were made on the same computer and with the same tolerances for

the truncation error as the runs reported in Section VI and in Appendix A. The

values in Table B-I can be compared with the first half of Tables I, II, and

A-I. Quite obviously, in our example, the implicit RUNGE-KUTTA formulas

are much slower than the corresponding explicit RUNGE-KUTTA formulas or

the RUNGE-KUTTA transformation formulas.
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However, since implicit RUNGE-KUTTA formulas are available for any order

of accuracy, they might be rather attractive for some problems which require

high-order accuracy.
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APPENDIX C

M0 DIFIED MLILTI STEP METH0 DS

40. Although this paper deals with one-step methods, for comparison we shall

consider in this appendix the new modified multistep formulas suggested

by J. C. BUTCHER [ 8 ]. We have already mentioned in Section I that

these new formulas are much more convenient than the traditional multi-

step formulas since they are based on fewer backward steps than were the

earlier formulas.

For instance, BUTCHER's 7-th-order formula isbased on only three equi-

distant backward points tn, tn-1, t_-2, whereas the traditional 7-th-order

implicit multistep formula of ADAMS requires six equidistant backward

points tn, tn_l, tn_2, tn-3, tn-4, tn- 5 •

As already pointed out in Section I, the stability restrictions of the traditional

multistep methods are overcome in the case of the modified multistep methods

by the introduction of one additional non- step point. This requires one addi-

tional formula for thenon-steppoint. But this additional computational effort

seems more than compensated for by the convenience of the new formulas.

Since they are based on fewer backward points, the starting procedure and

the change of interval size is much more easily performed for these formulas

than for the traditional multistep formulas.

41. BUTCHER's multistep formulas are of the predictor-corrector type consisting

of two predictor formulas for the non-step point and for the next step point, and

one corrector formula for the next step point. The formulas require three

evaluations of the differential equations per step. In his paper [ 8 ], BUTCHER

presents such multistep formulas of the 5-th, 7-th, 9-th, 11-th, and 13-th

order.
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For instance, let us consider his 7-th-order formulas.

differential equation _ = u(t, x) his formulas read.

For a first-order

153
_x_+g_ = x. - _(x. - xo__) - -i_ (xn- xn__)

....

h_225 75 45)

A

Xn+

297 212

+ h k-_5-{ u_. 4a - 9 un - --_ un _1 - _ Ur,- + 0 (h _)

135 31

x. +_ = x_ + _-_ (x_ - x.__) + _-_ (x,, - x°__)

+ h 93 ^ 2304^ 27 99 39
-{ u_ ÷_ + _u_ +g_- _-_u_- _-_ u___- 30853O85

u.__)+ O(h_)

The subscript n + 1/2 denotes the non-step auxiliary point that is required

for stability reasons.

These formulas (C-l) were also used in an iterative way when starting the

method and when halving the integration step size.

In the latter case, we proceeded from the 5-th-order formula

45 9 + Ii
= +

+h(- 9 9-_ u_+ -3-_u_-_

Xn - __

+-i_u._ + O(h%

(C -2)

as a first approximation for the half-step point.

In the case of a second-order differential equation _ = f(t, x, u), a convenient

approximation for the leading term of the truncation error for x___ in (C-1)

reads:
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T
Xn÷ 1

93^ 2304^ 463
= h\_i-_tln+ I +-------Un+]/2- _Un+l30:85 1234

459 171 73 )1234Un - 123---_un-i-617----_Un_2

+he(151 351fn_ 81 f= 3 _)234 fn*l- 1234 1234 -I- 123----4f.-

(C-3)

The formula (C-3) is obtained by constructing an 8-th-order formula for

xn +1 which coincides with the third formula in (C-l), as far as the x-terms

are concerned

135 31

xn. 1 = Xn + _-_-_ (xn- x.-1) + 6"17 (x.- Xn-,)

{ 463 27 I
+ h \I234 un÷l+ un - un - Un-1234 1234 -i 1234

+h_(_ 51 f=.l+ 351 fn+ 81 3 )1234 _1234 i234 fn-l+ 1234 fn-e:
+ 0(h9)

and subtracting (C-4) from the third equation of (C-I).

(c-4)

We have applied BUTCHER's 7-th-order formulas to the restricted problem

of three bodies. The point of intersection with the x-axis of our periodic

orbit (Figure 3) after a complete period was found from the coordinates,

velocities, and accelerations for the last three points of the orbit by

Hermitian interpolation.

While all results in Section VI and in Appendices A and B were obtained using

an error tolerance of 10 -_6 we had to relax the tolerance somewhat in the

case of BUTCHER's multistep method. In view of the magnitude of some of

the coefficients of the predictor formulas, the necessity for such a relaxa-

tion is not surprising. We ran BUTCHER's formulas for an error tolerance

of 5"10 -16 and of I0-_s.
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TABLE C-I. RESTRICTED PROBLEM OF THREE BODIES

Results for 7-th-Order Formulas

Tolerance: 5 • 10 -_s

Method Final x Final

BUTCHER 1 . 19999 999 99 99904

1. 20000 00000 01013

1.20000 00000 00124RKT 2

-1. 04935 75098 31055

No. of Computer Running

Steps Time (min)

3370 O. 63

- 1. 04935 75 09 8 31284 2118 0.38

-1. 04935 75098 3041:0 1097 0.20

Method

BUTCHER

RKT 2

TABLE C-II. RESTRICTED PROBLEM OF THREE BODIES

Results for 7-th-Order Formulas

Tolerance: I0- _

Final x

1. 20000 000000120:.4

Final

-1. 04935 75098 31504

No. of Computer Running

Steps Time (min)

2799 0.53

1.20000 00000 02329 -1. 04935 75098 32640 1913 0.35

1.2000000000 00239 -I. 04935 75098 30579 989 0.18

Tables C-I and C-II show the results of the runs we made for BUTCHER's

modified multistep formulas and for certain other methods described in

this report, always comparing methods of the same order and runs with

the same error tolerance.

Since a multistep method is based on a number of backward steps, it neces-

sarily has a larger truncation error than a one-step method. A multistep

method therefore requires a larger number of steps for our orbit.

In Tables C-I and C-H the computer running times are rather closely propor-

tional to the number of steps, independently of the individual method.
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For BUTCHERTs multistep method this means that, although this method re-

quires only three evaluations of the differential equations per step, it is not

faster per step than the one-step methods we have considered. Obviously,

much of the speed of the multistep method is lost by the frequent step size

changes required in our problem. Any halving of the step size requires an

expensive (forward and backward) iteration procedure to maintain sufficient

accuracy. Therefore, multistep methods are not well-suited to problems

that require frequent changes in the integration step size. Under the circum-

stances it is still somewhat surprising how well BUTCHER's multistep

method is doing in our example compared with the one-step methods listed.
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